
www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 1

《egPLC6888 User Manual》

Overview

egPLC6888 is a programmable PLC/RTU device applied to industrial application for data acquisition and
control actuation, which is integrated with signal sampling, signal processing, and industrial control
actuation. It is operated in low power with high efficiency, and anti-interference features, being able to
do industrial process control and build customized equipment. egPLC6888 is embedded with a powerful
32bit microprocessor for application customization. Communication through RS485 provides a flexible
and powerful topology for network building with local/remote sensing and control. Through simple and
state machine based C language customization, egPLC6888 is much suitable to accomplish application
target in traditional PLC application fields.

egPLC6888 PLC/RTU facilitates 28 physical IO ports

- 1 USB device port, used for egPLC6888 program download and PC windows API access to this device

- 2 RS485 master port, used for accessing local and remote RS485 slave devices and instruments

- 1 RS485 Modbus slave port (configurable as master port), used for connecting local/remote RS485
master or PC API access to this device

- 8 Current ADC channels, used to sample 4-20 mA analogue current signals (IO pins shared with
analogue voltage ADC channels)

- 8 Voltage ADC channels, used to sample 0-5V analogue voltage signal (IO pins shared with analogue
current ADC channels)

- 4 Counter sampling input channels, used for pulse signal counting (IO pins shared with digital input
channels)

- 8 Digital signal input channels, used to sample digital voltage signal

- 8 Solid state relay output channels, used for control actuation. The first 4 out of which are common
pins for 4 PWM (Pulse-Width-Modulation) channels

IO ports are separate from CPU with photo-electrical couple protection, and the maximal IO input
tolerant voltage is no less than 24VDC.

egPLC6888 power supply is designed with extra wide range, it can be operated normally between 9VDC
and 24VDC, and 12VDC power supply is recommended.



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 2

Figure 1. Real photo image of egPLC6888

Figure 2. egPLC6888 and its IO ports layout

Figure 3. Application example of egPLC6888 network topology, also standalone equipment

485bus



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 3

Electrical character of egPLC6888 IO pins

RS485 Slave port: Differential IO signal input/output A and B, with 8-bit data format, 1-bit stop, no bit
parity. The communication baud rate and other parameters can be set through “Visual State Machine”
software utility. RS485 slave port is embedded with Modbus protocol for local/remote master machine
to access any egPLC6888 internal register. RS485 port conforms to RS485 Modbus RTU protocol, which
is robust and can be operated in harsh environment for industrial devices communication.

RS485 Master port: Differential IO signal input/output A and B, with 8-bit data format, 1-bit stop, no bit
parity. The communication baud rate and other parameters can be set through “Visual State Machine”
software utility and programmatically. The egPLC6888 can access slave RS485 devices clustered on the
same RS485. RS485 master port conforms to RS485 bus protocol in hardware, which is robust and can
be operated in harsh environment for bus signal communication.

8 solid state relays output Y0..Y7 with each channel sustaining 36VDC and 4A electrical power burst.
However, a mechanical middle relay is recommended for power circuit control. A typical application is
as follows (fuse is optional):

Figure 4. Connection diagram for output control

The load is selected according to application requirement. The lowest driving voltage for load is
recommended +5VDC, user can raise the load voltage and power dissipation according to requirement.
The optional fuse is for current overload protection. Proper selection of such measurements is for
protection purpose.

egPLC6888 has 8 solid state relay outputs, 4 out of which has high-speed pulse PWM features. The
output frequency and duty cycle can be controlled by VSM embedded C language. To control IO output
one can realize this through PC USB API and 485 Modbus access.

egPLC6888 has 8 digital channels X0..X7. When external input voltage is greater than 3.6V, the input
digital signal is interpreted as high. When the external voltage signal is less than 2V, the input digital
signal is interpreted as low. The recommended input signal should be greater than 5V as to demonstrate
high level and lower than 1V as to demonstrate low level. Each input can sustain DC voltage up to 36V.

egPLC5888

Yi GNDY

fuse

Load

+5V/12V/24V



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 4

Apart from this function, the first four channels, X0, X1, X2, X3 have pulse counting ability. This input
pulse counting function is a parallel hardware design, although they physically share the same pin as
digital level input. The counter can be read/set/reset via the access of connected internal registers by
embedded C code. Moreover users can access this hardware function via USB port and RS485 Modbus
slave port with remote PC API.

egPLC6888 has 8 analogue input channels AD0..AD7. egPLC6888 has both analogue current and voltage
sample function. The input types can be selected by dip switch configuration. It is configured as voltage
input by factory default. The voltage analogue input ranges from 0 to 5VDC and its resolution is 12 bits,
which means the measurement can reach as accurate as 0.025% of 5V. The maximal tolerant input
voltage is 20VDC and each channel input resistor 5K Ohm. For the analogue current input the maximal
tolerant input voltage is 10VDC and its internal input resistance is 250 Ohm.

USB port can communicate with windows/Linux PC host via HID protocol. egPLC6888 firmware has built
in USB HID protocol and performs plug and play without extra host device driver. Armed with
egPLC6888 USB API, this device can be used to build PC-based standalone testing machine or various
equipment. As such application has been demonstrated in many scenarios.

egPLC6888 IO space register address

egPLC6888 has facilitated 64K IO register space. All registers are 32-bit if they are not notably specified.
All addresses are aligned with 4 byte address. All registers in memory storage is complied with big
endian format.

Reg. address (hex) Reg. Mnemonic Interpretation Read/write mode

0000 .. 0FFC IO_MEM 1024 32-bit general
registers

read/write

1000 AD0 12-bit ADC result reg. Read only

1004 AD1 12-bit ADC result reg. Read only

1008 AD2 12-bit ADC result reg. Read only

100C AD3 12-bit ADC result reg. Read only

1010 AD4 12-bit ADC result reg. Read only



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 5

1014 AD5 12-bit ADC result reg. Read only

1018 AD6 12-bit ADC result reg. Read only

101C AD7 12-bit ADC result reg. Read only

2000 TR[0].CNT 16-bit counter Read/write, Write 0
to clear

200C TR[0].RUN Write 1 to start to
count, 0 to remain

Read/Write, share
with X0

2010 TR[1].CNT 16-bit counter Read/write, Write 0
to clear

201C TR[1].RUN Write 1 to start to
count, 0 to remain

Read/Write, share
with X1

2020 TR[2].CNT 16-bit counter Read/write, Write 0
to clear

202C TR[2].RUN Write 1 to start to
count, 0 to remain

Read/Write, share
with X2

2030 TR[3].CNT 16-bit counter Read/write, Write 0
to clear

203C TR[3].RUN Write 1 to start to
count, 0 to remain

Read/Write, share
with X3

3000 X0 1-bit digital input reg. Read only

3004 X1 1-bit digital input reg. Read only

3008 X2 1-bit digital input reg. Read only

300C X3 1-bit digital input reg. Read only

3010 X4 1-bit digital input reg. Read only

3014 X5 1-bit digital input reg. Read only

3018 X6 1-bit digital input reg. Read only



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 6

301C X7 1-bit digital input reg. Read only

4000 Y0 1-bit digital output reg. Read/write

4004 Y1 1-bit digital output reg. Read/write

4008 Y2 1-bit digital output reg. Read/write

400C Y3 1-bit digital output reg. Read/write

4010 Y4 1-bit digital output reg. Read/write

4014 Y5 1-bit digital output reg. Read/write

4018 Y6 1-bit digital output reg. Read/write

401C Y7 1-bit digital output reg. Read/write

5000 PWM[0].FREQ 16-bit PWM frequency
register, 50..1000

read/write

5004 PWM[0].DUTY 16-bit duty reg. 0..100 read/write

5008 PWM[0].POL Waveform phase reg. read/write

500C PWM[0].RUN 1-bit run/stop register read/write

5010 PWM[1].FREQ 16-bit PWM frequency
register, 50..1000

read/write

5014 PWM[1].DUTY 16-bit duty reg. 0..100 read/write

5018 PWM[1].POL Waveform phase reg. read/write

501C PWM[1].RUN 1-bit run/stop register read/write

5020 PWM[2].FREQ 16-bit PWM frequency
register, 50..1000

read/write

5024 PWM[2].DUTY 16-bit duty reg. 0..100 read/write

5028 PWM[2].POL Waveform phase reg. read/write

502C PWM[2].RUN 1-bit run/stop register read/write



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 7

5030 PWM[3].FREQ 16-bit PWM frequency
register, 50..1000

read/write

5034 PWM[3].DUTY 16-bit duty reg. 0..100 read/write

5038 PWM[3].POL Waveform phase reg. read/write

503C PWM[3].RUN 1-bit run/stop register read/write

6000 TIMER[0] 32-bit clock, in seconds read/write

6004 TIMER[1] 32-bit clock, in seconds read/write

6008 TIMER[2] 32-bit clock, in seconds read/write

600C TIMER[3] 32-bit clock, in seconds read/write

6010 TIMER[4] 32-bit clock, in seconds read/write

6014 TIMER[5] 32-bit clock, in seconds read/write

6018 TIMER[6] 32-bit clock, in seconds read/write

601C TIMER[7] 32-bit clock, in seconds read/write

6020..603C TIMER[8..f] 32-bit clock, in seconds Read/write

6100 TIMER[10] 32-bit clock, in ms Read/wite

6104 TIMER[11] 32-bit clock, in ms Read/wite

6108 TIMER[12] 32-bit clock, in ms Read/wite

610C TIMER[13] 32-bit clock, in ms Read/wite

6110 TIMER[14] 32-bit clock, in ms Read/wite

6114 TIMER[15] 32-bit clock, in ms Read/wite

6118 TIMER[16] 32-bit clock, in ms Read/wite

611C TIMER[17] 32-bit clock, in ms Read/wite

6120..613C TIMER[18..1f] 32-bit clock, in ms Read/wite



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 8

C000/C004/C008 IDAT (com0/1/2) RS485 master read
port

read only

C100..C3FF
C400..C7FF
C800..CBFF

ODAT(com0/1/2) 768/1024/1024-Byte
RS485 output data
write port buffer

write only

C030/C034/C038 CDAT(com0/1/2) Number of output
bytes to send

write only, trigger
to send

C040/C044/C048 BAUD(com0/1/2) Receive/send baud
rate

write only, set baud
rate

C050/C054/C058 MODE(com0/1/2) Mode register, refer to
following table 2

Write only

E000 AD0-AD1 RS485 AD condensed
channel (16-bit each)

read only, with
ADC1 higher word

E004 AD2-AD3 RS485 AD condensed
channel (16-bit each)

read only, with
ADC3 higher word

E008 AD4-AD5 RS485 AD condensed
channel (16-bit each)

read only, with
ADC5 higher word

E00C AD6-AD7 RS485 AD condensed
channel (16-bit each)

read only, with
ADC7 higher word

E010 XY ------X7..X0------Y7..Y0

32bits, the bitmap for
8-input for Xi and 8-
output for Yi.

read only

F000 .. FFFC NVR 1024 32-bit non-
volatile registers

read/write

Table 1. egPLC6888 OI space definition



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 9

Communication
mode

Definition Description Examples,data:parity:stop

Bit<3..0> The stop time for a datum
transferred

0：for 1-bit stop 0x8020, 8:N:1

1：for 1.5-bit stop 0x8021, 8:N:1.5

2：for 2-bit stop 0x8022, 8:N:2

Bit<7..4> Parity mode for a datum 0：for even parity 0x8000, 8:E:1

1：for odd parity 0x8010, 8:O:1

2：none parity 0x8020, 8:N:1

Bit<11..8> Reserved
Bit<15..12> Bits for each atomic

sending
8：8-bit for a datum 0x8020, 8:N:1

7：7-bit for a datum 0x7020, 7:N:1

Table 2. RS485 communication mode definition

IO_MEM register space: 0x0000 – 0x0FFF, 4K bytes in total, 1024 32-bit registers, which have read and
write functions. These can be accessed by customer application C code or by PC API, also can be used for
data communication synchronous for multi-port/multi-device access.

ADC IO space AD0..AD7: 0x1000 – 0x101F, 32 bytes in total, 8 32-bit ADC sampling registers, read only.
Data sampling process is automatically carried out by hardware. User can access them at any time, and
what user read are the latest sampling results.

Counter register space: TR0 to TR3. Their IO space address is 0x1000 and 0x1030.

0x1000 and 0x100C are the first counter register and its enable register；0x1010 and 0x101C are the
second counter register and its enable register, and so on. The enable registers can be used to start/stop
the counter register. Their IO Pins are shared with X0, X1, X2, X3, and their count registers can be read
and written. The counting trigger of each channel is the rising edge of the IO pin.

Digital signal IO space X0..X7: 0x3000 – 0x301F, 32 bytes in total, 8 channels, 4-byte for each channel,
read only, only the least significant bit is defined for a channel.



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 10

Digital signal output (solid state relay) IO space Y0..Y7: 0x4000 – 0x401F, 32 bytes in total, 8 channels, 4-
byte for each channel, read/write, only the least significant bit is defined for a channel.

PWM output (solid state relay) IO space: 0x5000 – 0x503F, 64 bytes in total, 4 channels, 16 bytes for
each channel, with 4 field registers for each channel, which are frequency, duty cycle, phase polarity,
and start/stop register. The PWM output frequency ranges from 50Hz to 1kHz, the duty cycle ranges
from 0 to 100. Although other numbers can be written to field frequency and duty registers, their
register values will be auto clamped when field run register is written to 1, as a result this switches the
pin output from Yi to PWMi with the wave form generated.

System clocks TIMER0..15 are 16 timers counting in seconds; TIMER16..TIMER31 are 16 timers counting
in milliseconds. They can be read/write at any time and they keep counting all the time.

RS485_0 IO space: 0xC000 input data read port. When a read attempt returns -1 no bytes available in
input buffer. Every read access returns one byte.

0xC100 output data write port, with 768 bytes buffer.

0xC030 data send port, write only, to instruct the number of bytes to send from the output data buffer
register from 0xC100 to 0xC3FF.

0xC040 the baud rate register, the baud rate setting here is temporarily stored in RAM.

0xC050 the mode register, serial data bits for a byte, parity type, and stop bits.

RS485_1 IO space: 0xC004 input data read port. When a read attempt returns -1 no bytes available in
input buffer. Every read access returns one byte.

0xC400 output data write port, with 1K bytes buffer.

0xC034 data send port, write only, to instruct the number of bytes to send from the output data buffer
register from 0xC400 to 0xC7FF.

0xC044 the baud rate register, the baud rate setting here is temporarily stored in RAM.

0xC054 the mode register, serial data bits for a byte, parity type, and stop bits.



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 11

RS485_2 IO space: 0xC008 input data read port. When a read attempt returns -1 no bytes available in
input buffer. Every read access returns one byte.

0xC800 output data write port, with 1K bytes buffer.

0xC038 data send port, write only, to instruct the number of bytes to send from the output data buffer
register from 0xC800 to 0xCBFF.

0xC048 the baud rate register, the baud rate setting here is temporarily stored in RAM.

0xC058 the mode register, serial data bits for a byte, parity type, and stop bits.

IO space access is via IN/OUT instructions of embedded microprocessor, the egPLC6888 system provide
C language subroutine interface for user development.

RS485 ModbusRTU Protocol

egPLC6888 RS485 slave port has a ModbusRTU communication protocol built-in, which enables other
master device to communicate with this device using RS485 data bus. egPLC6888 Modbus command is
simplified to 2 function categories, 0x03 and 0x10 which are register read and register write operations.
egPLC6888 RS485 Slave receives remote master PC Modbus commands, then processes it and returns
immediately. 2 command formats, read command (function code 0x03) and write command (function
code 0x10) are implemented.

The command and data frame are represented with byte code fashion in Modbus RTU format, using 2
hexadecimal digits to represent one byte. In the following examples, we will assume the egPLC6888 485
slave address 0xaa.

Remote PC read egPLC6888 register operation= {addr, 03, sah, sal, regsh, regsl, crcl, crch }

egPLC6888 returns = {addr, 03, nbytes, w1h, w1l, w0h, w0l, …, crcl, crch} where the sequential 4 bytes
quadruples form one 32-bit long word (w1h,w1l,w0h,w0l), in big-endian format in both bus transmittal
and register storage state.

Where sah is the higher byte of target register address, sal is the lower byte of target register address,
regsh is the higher byte number of 16-bit registers to access, regsl is the lower byte number of 16-bit
registers to access, crcl lower byte of CRC, crch is higher byte of CRC, w1h is the most significant byte of
the 4-byte register content, w0l is the least significant byte of the 4-byte register content.



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 12

Example 1: master PC read egPLC6888 Y0 digital outputs（solid state relay）status.

PC outgoing data frame: aa 03 40 00 00 02 c8 10

Returned from egPLC data frame: aa 03 04 00 00 00 01 21 39

Example 2: master PC read egPLC6888 AD0 analogue input for current/voltage.

PC outgoing data frame: aa 03 10 00 00 02 d9 10

Returned from egPLC data frame: aa 03 04 00 00 01 ab a0 d6

Remote PC write egPLC register operation= {addr, 10, sah, sal, regsh, regsl, nbytes, datH, datL,…, crcl,
crch }

egPLC returns= { addr, 10, sah, sal, regsh, regsl, crcl, crch }

where sah is the higher byte of register address, sal is the lower byte of the register address, crcl is the
lower byte of CRC, crch is the higher byte of CRC, regsh, regsl are the numbers of the registers for access
(here every 32-bit register is expressed as 2 16-bit registers formally), nbytes is the real number of data
bytes to write.

Example 3: Master PC writes egPLC6888 Y0 digital output (solid state relay) status to 0 (turn on).

PC outgoing data frame: aa 10 40 00 00 02 04 00 00 00 00 e5 4a

Returned from egPLC data frame: aa 10 40 00 00 02 4d d3

Example 4: Master PC write egPLC6888 Y1 digital output (solid state relay) status to 0 (turn on).

PC outgoing data frame: aa 10 40 04 00 02 04 00 00 00 00 e4 b9

Returned from egPLC data frame: aa 10 40 04 00 02 0c 12

egPLC6888 RS485 communication baud rate can be set through “visual state machine” software utility.
egPLC6888 RS485 both master and slave ports use the same default communication settings. However,
for RS485 master port, the communication parameters can be altered by user embedded C code.



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 13

egPLC6888 Embedded C Programming

egPLC6888 is a very powerful PLC. Unlike most traditional PLC, where the application target is realized in
ladder diagram egPLC6888 is completely realized in C language. It is not only good at combination logic
network but also good at calculation, data management and protocol customization. egPLC6888 mimics
a minicomputer, with a set of peripheral IO interfaces to do sensing control, and actuation. egPLC6888
employs user defined state machine by PC windows utility to support C language application
development. egPLC6888 reserves 32KB RAM space for user program stack and variables, and also
system reserves 128KB flash memory for user binary code downloading. The development tool chain is

C Compiler: cc105.exe

Assembly language assembler: as105.exe

Simulator: sim105.exe

Binary code downloader: fsh4888.exe

Users can use visual state machine tool set to develop egPLC6888 embedded application, to realize the
board-level customization, a graphics interface IDE utility “Visual State Machine” to develop the
customized program. The following is the introduction of this IDE development utility.



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 14

Figure 5. a glimpse of user program development using visual state machine.

This very classic blink program can be compiled and downloaded egPLC6888 via GUI utility. Once this
program is downloaded through USB cable, the egPLC6888 is running and performing user-defined task.

The above program C code is equivalent to the following code:

#include <syslib.h>
void State_0(void);
void State_1(void);
void State_2(void);

void main(void) { switch_to(State_0);}

void State_0(void) {
switch_to(State_1);
}

void State_1(void) {
br_outport(0x4000, 0); //switch on Y0
br_delay(500);
switch_to(State_2);
}

void State_2(void) {
br_outport(0x4000, 1); //switch off Y0
br_delay(500);
switch_to(State_1);
}



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 15

The core mechanism of the egPLC6888 is the finite state machine. In each state, the feature and task is
expressed in C language. The underneath multi-task os running inside egPLC6888 supports and manages
the state transfer switch and IO request.

The C development tool set provide a mini set of embedded library. The following table list API functions:

prototype parameters Functionality comment

void switch_to(long

addr)

long addr -- the target

address of destination

state

This function realizes the

state machine transition from

source state to target state,

where user program running

from one state jumping to next

state. The addr is the address

for the target state, being a

label or a function name.

void

sleep_1_tick(void)

none Gives up cpu execution for 1

tick time. 1 tick time is 10ms

interval in egPLC6888

void br_delay(int ms) int ms -- to sleep current

program in ms millisecond

amount

This function realizes the

user program controlled delay

in milliseconds. egPLC6888

user delay resolution is 10

milliseconds. The parameter

“ ms” is recommended to be

multiple of 10.

long br_inport(long

addr)

long addr -- the register

address of egPLC6888

This function reads a register

content from IO register

space. Parameter “ addr” is

32-bit integer for the IO

space register address.

void br_outport(long

addr, long dat)

long addr -- the register

address of egPLC6888

long dat -- the data to

store the register

This function writes a 32-bit

integer to register content

from IO space. The parameter

“addr” is the address of the

target IO space register.

void

qdat_mem_copy(char

*desc_io, char

char *desc_io -- IO space

register address

char *src_mem -- C program

This function copies a block

of data from source area to

destination area, the address

can be memory address and IO



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 16

*src_mem, int cnt) variable address

int cnt -- the total number

of bytes to copy

buffer address.

Table 4. system library for visual state machine C programming

The above 6 functions are basic API for users to develop C program by Visual State Machine utility.
These tiny C prototypes are defined in syslib.h, and syslib.asm is their assembly implementation. The file
is automatically linked to build a final binary target. Once this binary file blink.hex is downloaded over
USB, the user program is running flashed and won’t be lost for new power cycles.

C language programming development environment is provided by Visual State Machine software
package.



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 17

egPLC6888 Graphic User Interface development tool — Visual State Machine

Figure 6. State transition diagram for a real application

Visual State Machine (VSM in brief) provides a GUI C language development environment. Compared
with other IDE C language development environment, this software package provides users with more
freedom and simplicity for C language development. Users do not need to code a complete C program,
instead, users are only required to focus on the state transition and their logic, the complete C program
of the finite state machine is automatically generated by the software system. Finite state machine is
the software architecture of egPLC6888 series product, which offers a clear and easy way to code and
customize various data acquisition and control actuation and communication programs. Finally this will
do users great benefit for clear logic and efficiency improvement for problem solving.

VSM is especially prepared for egPLC compatible series devices with built-in features for board-level
function customization in C language. egPLC6888 is very much suitable for industrial process control and
remote data acquisition, and all the same building standalone mechanical and electrical equipment.

VSM treats every state a sub-routine. The transition from state to state is through switch_to() function
call. The foreground state transition diagram and the code body for every state is encapsulated and
completed with main() entry point and <syslib.h> header in background by the software system. The
complete program is eventually compiled and assembled into binary machine code.



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 18

VSM software function includes state graph edit and C code edit. VSM also integrates C language
development tool chain, including C grammar check, C program compilation, assembly, and binary code
downloading. For more details, please refer to VSM software for more egPLC6888 C language
programming discussion.

Figure 7. To add a new state by right-click

The above VSM diagram shows the new state is created and added to the state machine. The “visual
state graph” tab display the finite state machine with transition from state to state. We can edit
attributes for every state, setting the state name or transitional path.

Figure 8. Change the property of a states

VSM menu function includes cleaning program from egPLC6888 and setting the baud rate and Modbus
slave address of RS485 parameters.

Figure 9. Setting RS485 communication parameters



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 19

After VSM project file is created, we can edit the visual state graph and C code through the software
utility menu functions. They are grammar checkup, compilation, and assembly and program download.

VSM programming example 1 is to control the digital output Y7, output ‘0’ (close the relay) for 1 second,
then output ‘1’ (open the relay) for 0.5 seconds. And then repeat this behavior.

State Output reg. addr. Output data val. Delay time Next State remark

State_0 State_1 initialization

State_1 0x401c 0 1000ms State_2 relay on

State_2 0x401c 1 500ms State_1 relay off

Table 5. State transition of the example

The visual state graph and code for each state are as follows.

Figure 10. Example 1, blinking

One can watch the PLC6888 output indicator led for digital channel 7 (Y7)



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 20

VSM programming example 2, watch the digital input channel X7 status, and output to Y7.

State Input reg. addr. Output reg. addr. Variable name remark

State 1 0x301c 0x401c tmp

Figure 11. Example 2, PWM output

When the input X7 is connected to 5V voltage or more, the return result is “1”. When X7 is connected to
1V voltage or less, the return result is “0”. The output Y7 reflects input X7.

Visual state machine programming example 3 is to realize high frequency signal output via PWM
through the pin Y1. Y0..Y3 output pins can be used for normal solid state relay output and also can be
used for high speed switch frequency output. We use PWM interface to implement the high speed
switch output. An external source of power is required to work with the circuit loop.

Every PWM channel has 4 registers to define PWM characters. The 4 channels are independent and
being able to work simultaneously.



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 21

Output frequency register: address offset is 0x00, to set output waveform frequency.

Duty cycle ratio register: address offset is 0x04, value range from 0 to 100 in percentage.

Wave polarity phase register: address offset is 0x08, which is to complement the duty cycle percentage.

Run/stop register: offset address is 0x0c, where 0 for stop, 1 for start to output PWMwaveform.

What we want here is to output a symmetric square waveform with frequency set to 100Hz from output
Y1 pin. To realize this experiment we just replace the State_1 code from the previous example with the
following code and then compile, assemble, and download the program.

br_outport (0x5010, 100);

br_outport (0x5014, 50);

br_outport (0x5018, 1);

br_outport (0x501c, 1);

while (1) br_delay(1000);

The PWM waveform drives led indicator of Y1 to light up and turn off very quickly (“0” to light up, “1” to
turn off), as a result, it becomes dim.



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 22

Communication interface and master PC API

egPLC6888 has 4 communication ports, 1 USB and 3 RS485 ports. USB communication port is used by
master PC to access egPLC6888 IO space registers via API. USB port is also used to download user
program and to set RS485 communication mode settings. RS485 ports include 2 master and 1 slave
ports. The slave port is embedded with Modbus protocol, and slave port can also be accessed by RS485
API. In either way the IO space registers can be read/written through C/.Net programming language.

Windows API supports PC host C/C++, C#, Vb development programming interface. The API lib supports
USB, RS485 (slave port), and TCP/IP network communication. Although egPLC6888 only supports USB
and RS485 modbus RTU slave.

The software architecture united all egPLC series and other egDevice products. The following diagram
summarizes the software component and exported API for C/C++ and .Net.

Figure 12. Windows C/C++ API and .Net API architecture

For egPLC6888, egCommIO.h, egCommIO.lib, egCommIO.dll are used for C/C++ API; and egTreeNet.dll is
used for .Net which is used in C# / VB.

.Net API encapsulates 3 library classes, they are egUsbPort, eg485Port, and egNetPort. egTreeIO.dll
integrates all the above 3 library classes into a single one under .Net architecture, which provides an
easy way for .Net Windows GUI programming development. It is shown as follows:



www.raynix.com egPLC5888

上海蓝钥智能科技有限公司 23

Figure 13. PC API software components

The following table summarizes the product variants and their API classes. All APIs are associated with
communication ports.

Product and

Communication Class

USB Port connection 485 port connection Net port connection

egTreePIO32AD yes

egPLC yes yes

egDAA yes yes

Common API Prototypes egConnect

egInput

egOutput

egSampleAll

eg485Open

eg485Input

eg485Output

eg485SampleAll

Net_egInput

Net_egOutput

Net_egSampleAll

C/C++ library files egCommIO.dll

egCommIO.lib

egCommIO.h

egCommIO.dll

egCommIO.lib

egCommIO.h

egCommIO.dll

egCommIO.lib

egCommIO.h

DotNet C#/VB file and

Class

egTreeIO.dll

class eg485Port

class egUSBPort

class egNetPort

egTreeIO.dll

class eg485Port

class egUSBPort

class egNetPort

egTreeIO.dll

class eg485Port

class egUSBPort

class egNetPort

egOpen485

egRead485

egWrite485

Table 6. summary of C/C++ and .Net API for egPLC6888 communication

For more information about Windows PC API for egPLC6888, please refer to《egTreeIO API》

egTreeIO.dll integrates 3 with .Net Wrapper

egUsbPort eg485Port

egNetPort


